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The study is concerned with the deformation of an infinite elastic layer under the action of 
two rigid punches whose plane circnlsr cross-sections differ from each other (Fig. 1). The 
problem is first reduced to a system of dual integral equations which are then transformed 
into a system of two regular Fredholm integral equations. The solution of the latter system 
is given in the form of a power series in a/h. Relations are also obtained between punch 
displacements and the applied loads. 

1. Formulation of the problem and ita reduction to a system of 
integral equations. We will utilize the known expressions for displacements and 
stresses in terms of two Papkovich-Neuber harmonic functions 

2Gu,=(3-4v)0-Gz~ (1.1) 

cz=2(i-.,~_&,~, 
a 

C 

a@ 
rrz= ar (1-22Y)o-~F-_z 1 (1.2) 

Here C is the shear modulus and v is Poisson’s ratio(+). 
If the axial displacements of the punches 8, and &, sre assumed to be known, then, in 

the absence of friction, the problem consists of the determination of two harmonic functions 
@ and F in the regions 0 &r,<-, 

u* = - 8,, 
-h < E < 0, the functions satisfying the conditions 

r < a; (T*=o, r>a; z,,=o, o<r<m; z=o (1.3) 

uz = 8,, r < b; oz=O, r>b; z,,=O, O<r<co; z=- h (1.4) 

Moreover, for r + w, the functions @ and F must approach zero. We will seek a solution 
in the form of Hankel integral transform representations (**) 

co 

l @= 
s 

[Ash h(z+h)+Bch h(z+h)]J,(hr) S& 

0 
co 

F=’ ICshi.(r+h)+Dcbh(l+h)]~~+S(hh)}dh 
\I 
0 

(1.5) 

The conditions concerning the absence of shear stresses on the layer boundaries will be 
satisfied by the relations 

(i - 2v) (A + B cthp) - C - D cthp = 0 

(1-2~) B -D + PA = 0, p = hh (1.6) 

l ) 

**I 

For formulas involvin 
dary conditions, see, 9 

the quantit’ 
or example, Yl!:Ga?” uQ’ 

For the behavior of S$t) see (1.18). It can be shown 
tially related to the condition uz + 0 for r + 00. 

which do not appear in the boun- 

that the choice of S(p) is essen- 
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2 Elimination of C and D with the aid of (1.6) and replacement of A and B 
by tbe new unknowns ~(~) and ff f# leads to the following system of dual in- 
tegral equations for t&e remaining boundary conditions 

al 
s (I4 

~MJoW- Z(i__y) a”= 1 (Odr<a) (1.7) 
0 

b I Co 

i 6 
l 

\I s (PI Gail 
~WJoW-- 2(1--v) dh=I-_v 1 (0 < r < f’) (1.8) 

: 0 

I 

co 
P 

1 I 
= M(~.)Jo(Ir)dk=O, a<r<oo; 

I 0 

Fig. 1 
co . s N(p)J,,(~t)dh-=O, b<r<a 

(1.9) 
0 

The following notation has been introduced in (1.7) and (1.8): 

M-N 
P=A+Bctbp=I, T+Myp 

1-Q Q=is+&;p 

R= 
B N-N 1-Q -=L:-T-N-, 
sh P II P 

T=~b~+~W 
sbsp-P 

The substitution (see, for example, [I], Chapter VIII) 
a b 

M (p) = p S a,(t) cos Xt dt, N(p)=p t#(t)cos htdt c (1.11) 
0 0 

makes it possible to satisfy (1.9) and to reduce (1.7) and (1.8) to the form 
a co 

S o (9 dt _ =-+&+s~(f)dtS ,Q(p)Jo(hr)coshtdh- 
o f/r* - ta 

0 0 

O” r= b 

-0 b SIS 9, (t) cos at dt - S g(t)cosktdt T(p)Jo(hr)- 2I1__v) 

1 
s (IL) 

0 

r ‘#(t)dt 
b 00 

S o )/F=? 
=-$v+s$(t)dtS Q(p)Jo(kr)cos~fdh+ 

0 0 

(Ll2f 

(1.13) 

m a b 

+s IiS tp(t)cosXtdt- g(t)cosXtdt T(p)Jb(hr)-2((1__v) S 1 
s 04 

0 0 0 
For further transformation, we formulate the static equilibrium conditions 

aan b2x 

-p= 
ss 

~,LOrdrd4p = 
00 

SS bz Ir_--h~ dr 4 

00 

Tskhg into account Expressions 

as well as the relations [fl 
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co 

S Jl (ha) cos at dh = -+ , t<a (1.16) 

0 

(1.14) may be reduced to the form 

(1.17) 

If we now set 
0 0 

b 

s(r)=2(i-v)T(p)[~r(t)coshtdt-_S~(t)ca9hit] (1.18) 

0 0 

and utilize (1.171, then we may, by inverting the order of integration in (1.12) and (1.131, 
obtain the following system of equations for the unknown fiuxtions g(t) and $(:I: 

r S cp (4 dt _--'-~v+~qqt)dt~Q(p)Jo(hr)cosatda+ 
o vra - ta 

0 0 

a m 

+Srp(t)dtS T(p) (i --OS At) [i -Jo(hr)]dh- 

0 0 

b 01 

- q(t)& T(p)(i-cos ht)[i-&(It)]dl, 
s s 

O<r<a 
0 0 

r 9(t)dt S 
Ggb b O” 

---++$(t)dtS Q(p)Jo(b)cos htdA+ o/-p- i-v 
0 0 

(1.19) 

MO) 

i, 

+~WWt~W(~- cos At) [1 --Jo (hr)] dh - 

0 0 

a co 

- q(t)dt T&)(1-cosht)[i-J~o(hr)]dh, O<r<b 
c s 
6 0 

Solving (1.19) and (1.20) as Schlijmilch integral equations with known right-hand sides 
and making use of Eq. 

(1.21) 

we obtain a system of Fredholm integral Eqs. 

2Gi3, 

cp (t) = - Jt (i - y) t, T) + A’ (4 ql cp (r) dr - 

0 
b 

-1 K(t, 'C)$(T)dr, S O<t<a (1*22) 

0 

2G8, 
b 

9(t)=-n(~__)+-;i- 2 ILV> T)+K(t, r)l$(r)dr- S 
0 

a 

-$ K(t, ‘C)cpWdr, S 
0<t<b (1.23) 

0 
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whose symaatric kernels are given by Formulas 

‘p 
oo 

L (f, r) = 
I 

Q {p) co8 Lt ~08 At db , K (t, r) = 
s 

T fp, (1 - cos At) (4 - cos ijc) dh (1.2’) 

0 0 

R Dstetrmin~tlon of the relations between punch diaplacsmentm 
and applied loads. For oonveaience, Eqm. (1.22) and (1.23) may be divided into two 
systems of integral Eqs. 

1 Y 

olW=i+8 (R+S)~l(y)dydy--'~~(y)dy 

z 
s 
0 

Y 1 
(2.1) 

os@)=e (R+S)w(y)dy--e SPAY 
s S 
0 n 

1 Y 

s(2)=e'(R+Sfon(~)dy-- s~4(~)~~ 
s 

* 

s 
0 0 (2.2) 

Y 1 

or&)= i+e (R+S)ol(y)dy--sSwa(y)dy 
s 

wherein the following dimensfonles~ quantities have been iitroduced: 

ed- 
h ’ 

t 
I=Yf 

Y”f (2.3) 

co 

R=R(x, y, E)=+! Q(~)cos~cos~~yd~ 

a3 

S=S(x, y, 8)=+) T (14 (1 - cos per) (1 - cos pq/) dp 
IJ 

(2.6) 

Now, (1.17) msy be transformed into the following Eqe: (2.7) 

from which the desired exprssaions for the punch displacements are obtained (2.8) 

(2.9) 

i 0 

In order to obtafn actual results for various values of the geometric parameters e = a/n 
and y = b/a, it is necessary to em lay some numerical method for the determination of the 
functions o Io (~1 & = 1, 2, 3, 4) in 2.1) and f2.2). 

For smnl values of s, we may obtsin simple relations by expending the kernels R and S 1 
and the unknown functions ok in power series of E 

00 CQ c-0 

R= 2 Rz,8’, a!? = 2 S2,E2n, oh. = 
2 

Cohen 

n=o n=o -0 
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Expressions for the first-term coefficients in the indicated seriea are given by 

R,= -+ + y2), R,= &d f 6xryr + y*) 

a4 
so-&=O, S,=~xryr, or(O) = 1, 

01(3)=(35-3z2++), 

Ok(R) E 0 (k = 2, 3; II =o, 1, 2, 3, 4), 

co co 

' 

. 
r = m s 

Q (~1 PEEP, brn= T(P)PrndP 
I 

The approximations for F2.9) and (2.9) are given by 
,I 

(2.11) 

6 Ji-v)P i_2ro 
4Ga [ 

2ra 
-;S-&f3n&- 

( 
& + 2) ES + 2 r2e5 + 0 (8i)] 

& ;;)P ,i_~ya+z&38s_j 

(2.12) 

o4 X + 2) &sT5 + & r%5 + 0 t87j] (2.13) 

Formula (2.13) may be obtained from (2.12) by interchanging a and b, as one might ex- 
pect. 

Application of a limiting process to (2.12) for A + = (S + 0) yields the known relation 

6 = (1 - v) p 
4Ga 

which holds for the case of a single punch acting on a half-space. The next three terms in 
(2.12) which are independent of y= b/o characterize the effect of the I = - h plane, which 
is unstressed, but is subjected to the axial load P. Finally, the last term in (2.12) t&e in- 
to account the application of the second punch with finite radius b to the I = - h plane. 

Evaluating the integrals in (2.11) we obtain 

r, = 2.335, rx = 12.65, r, = 262.2, c, = 296.8 

whereupon (2.12) yields 

* = (1 -VI p 
a - [i - 1.498 + 2.6&’ - 12.67e6 + 5.25yb5 + 0 (a’)] 

4Ga 
(2.14) 

In particular, for a = l/4, we have 

4Ga6, 

(I-v)P =: 0.657 + 0,00510 ,y 2 (2.15) 

The last expression shows that under these conditions the influence of the size of the 
second pnnch becomes appreciable only for substantial valnea of y = b/a (of order 3 - 4). 

In conclusion, we note that for y=- 1 the problem under consideration may, from symmetry 
considerations, be treated like a pnnch of radius o acting on an elastic layer of thickness 
%h resting without friction on a rigid snbatrate. The solution to this problem was obtained 
in [3] by means of dual integral equations, and, for the case of y- 1, Formula (2.15) yields 
4Go8, = 0.662 (1 -v)P, which coincides with the corresponding result in 131 (cf. Table 3 
for p = 0.5). 
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Initial stresses in the middle plane enter into the differential equation for plate stability 
and the corresponding Bryan auergy criterion. 

In the ganeral case these stressas sre determined from the aolution of the plane problem. 
For a plate subjected to complex contour loadings, concentrated forcesit for example, the 
solution of this problem is very complicated. 

At the same time, the buckling energy criterion allows a representation in which only 
the work of the given external forces enters, in addition to the potential energy of plate ben- 
ding. Hence, the natural question arises as to whether it is generally necessary to know the 
diatribotion of the true initial stresses in solving stability problems. It is shown herein 
that critical values of the extaraal loadings may be found without determining the initial 
state of stress of the plate. 

A new form of the hsckling energy criterion is obtained in which the initial stresses do 
not enter. It is shown that in determining the additional taageatial displacements in which 
the exteraal loadings do work ia plate bucklin 
otilize conditions of inextensibility of the mid ! 

it is impossible, in the general case, to 
le plane. 

The proposed method of determining the critical loadings without a preliminary solution 
of the plane problem is illustrated by examples. The known Sommafeld problem of stability 
of a rectangular plate compressed by concentrated forces is considered. 

I. Let a, w, w be the components of the total displacement vector of points of the mid- 
dle plane of the plate in a rectangular x, y, s coordinate system, The x and y axes lie in 
the plane of the plate. The strains in the middle plane of the plate are 

&4 1 aws -- 
ex=7E+ 2 ax ’ ( ) 

(1.11 

We consider the stresses in the middle plane to satisfy the equilibrium Eqe. 

&g=*, a% %+--Cl ax -- 0.21 

and therefore 
a% 

=y=&W* 
3% 

x=-w 
(1.31 

The atresaca on the plate contour are connected with the loadinga X and Y by means of 
the dependences 
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