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The study is concerned with the deformation of an infinite elastic layer under the action of
two rigid punches whose plane circular cross-sections differ from each other (Fig. 1). The
problem is firat reduced to a system of dual integral equations which are then transformed
into a system of two regular Fredholm integral equations. The solution of the latter system
is given in the form of a power series in a/h. Relations are also obtained between punch
displacements and the applied loads.

1. Formulation of the problem and its reduction to a system of
integral equations. We will utilize the known expressions for displacements and
stresses in terms of two Papkovich-Neuber harmonic functions
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Here G is the shear modulus and v is Poisson’s ratio (*).

If the axial displacements of the punches 8, and 8, are assumed to be known, then, in
the absence of friction, the problem consists of the determination of two harmonic functions
® and F in the regions 0 {r oo, —h <z <0, the functions satisfying the conditions

u, = —08q, r<<a; o0,=0, r>a T,=0 0<r<oo; z=0 (1.3)
uz=6b1 r<b; Gz=07 l'>b; Trz———O’ 0<I‘<O°; z = —nh (104)

Moreover, for r -+ o0, the functions ® and F must approach zero. We will seek a solution

in the form of Hankel integral transform representations (**)
oo
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The conditions concerning the absence of shear stresses on the layer boundaries will be
satisfied by the relations
(1 —2v) (A 4 B cthp) — C — D cthp = 0
(1—2v) B —D +pAd =0, p =AMk (1.6)

*) For formulas involvin§ the quantitieg u,, 0, and o, which do not appear in the boun-
dary conditions, see, for example.l[eﬂ, 930,
**) For the behavior of S(u) see (1.18). It can be shown that the choice of S(y) is essen-

tially related to the condition u, + 0 for r + o0,
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Elimination of C and D with the aid of (1.6) and replacement of 4 and B
by the new unknowns M{jz) and N(u) leads to the following system of dual in-
tegral equations for the remaining boundary conditions
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Fig. 1 .
S Ny Jo(hr)drh=0, b<r<oc (1.9)
o
The following notation has been introduced in (l 7) and (1.8):
M—N —Q o _Atp—et
P=A+Bohp="] T+M m , Q YT
B M-—-N 1—Q _shp+pnchyp
RZS_E_}L_:: m T—N o T—"“’““—‘——Sh,p_m
The substitution (see, for example, {1], Chapter VIID)
M(p)= S(p(t) cos Atdt, N{p= u(ap (1) cos At dt (1.11)
0
makes it possible to satisfy (1.9) and to reduce {1.7) and (1.8) to the form
a o0
t)dt GBS
S ];Jr(ﬁ—?——ﬁ =—3 _av + OSq;(t) dt§ Q () Jo (Ar)cos Atdh — (1.12)
© a b S
S {[Sq}(t)cos Mdt—Sxp(t)cos A,tdt]T(p,)Jo M) =5 = 0 _‘i)v)}dx 0gr<a
6 0
r b oo
vindt by Sxp(z) sz Q (1) Jo (hr) cos At dh - (1.13)
yrrsn 1—w
o o 0
b

()

+§°{[§q}(t)cos Atdt ——-S\p(t) €0s Mdt}T(p,) Jo (A1) —W—T} dh, 0 r <Lt
0 0 §

For further transformation, we formulate the static equilibrium conditions
aln b2r

—P:S S s, |z=ordrdq>=S Scz Daep? 47 AP (1.14)
00 00
Taking into account Expressions
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as well as the relations [ 2]
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S Ji(Aa) cos Md7~=-:—, tla (1.16)
(1.14) may be reduced to the0 form

a b
S(p(t)dt:Stp(t)dt:—% (1.17)

0 0

If we now set
a b

SW=201—vT(w [Scp (t) cos Atdt — S'\p (t) cos At dt] (1.18)

and utilize (1.17), then we may, by inverting the order of integration in (1.12) and (1.13),
obtain the following system of equations for the unknown functions () and 1/ (¢):

r a o
S ;,-(at)_‘_ltga = — f_“v + S @ () dt S Q (1) Jo (Ar) cos At dh + (1.19)
) 0 0

38

+S(p(t)dt T () (1 —cos At) [1 — Jo (Ar)] dh —
b o
——Slp(t)dtg T)(1—cos Ay[1 —Jo(Ar)]drh, O0r<a
0 0
r \p(t)dt c8 b o
b
§Vra__'t—a=—i—v +§1p(t)dt§Q(p.)Jo(A.r)cos Atdh 4 (1.20)

+

TSP

P () dtS T —cos At)[1 — Jo(Ar))dh —
0

q)(t)dtS T (u) (4 —cos M) [1 — Jo(Ar)]dh, O0<r<b

Solving (1.19) and (1 20) as Schlomilch integral equations with known right-hand sides
and making use of Eq.
t

g[i —Jo (AF)] = —— V

rdr
1

=1 —cos At (1.21)

we obtain a system of Fredholm integral Eqs.
a
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whose symmetric kernels are given by Formulas

oo
L{t, 1')=S Q (1) cos At cos AvdAr, K (2, ’I’)zS T (1) (4 — cos At) (1 — cos Ag)dh (1.24)
[} [}

2. Determination of the relations between punch displacements
and applied loads. For convenience, Eqs. (1.22) and (1.23) may be divided into two
systems of integral Eqgs.

1 Y
o (z) =1 +e§(R+S)mx(y)dydy—eSSm (v)dy
1]

(2.1
¥ 1
s (w)=8S(R + S)wa(y)dyu@Swa (v)dy
i "
o @ =e\(R+ Doy —e S0y ay
0 0 (2.2)
; :
o4 (z)=1 +eS(R+S)m‘(y) dy—-eSSmg (¥) dy
b h
wherein the following dimensionless quantities have been introduced:
a b t T
8::7, TZTy 1':7: ?!x"'{' (2'3)
8, n(d—v) 8y A=) (9.4)
wl(”)+"5;¢h(x)=—“‘-[a"g;‘*w(t), g () + 5 " @a(2) = — 2G5, Y () 14
2 oG
Y 2.5
R=R{z,y, 8)27‘\ Q (u) cos pex cos pey d (2:5)
2 U
S =58(z, y, &)= —N—S T (p) (1 — cos pex) (1 — cos pey) dp (2.6)
h
Now, {1.17) may be transformed into the following Eqs: (2.7
1 1 ¥ ¥
46 i+ - 46 e
P=q _“v [6a5wx(r)dr + Gbsz(x)dx] , P:—i—__iV [SQSQ),(x)dx—{—GbSm. (x)dx]
0 0 0 0
from which the desired expressions for the punch displacements are obtained (2.8)
Y 1 1 Y
t—v) Py - 1—v)P [ :
5, =‘T;§-[§mx>dz-5m.<x) éz], PR ek L8 [Yor @) 42— n (21
¢ v o i
! M t M
A =So)1(x)da: u).(z:)dx--Sm,(z)d:cSm,(x)d:c (2.9)
0 0 o hy

In order to obtain actual results for various values of the geometric parameters & = a/h
and ¥ = /s, it is neceasary to employ some numerical method for the determination of the
functions w,(x) (k= 1, 2, 3, 4 in (2.1) and (2.2).

For small values of &, we may obtain simple relations by expanding the kenels R and S
and the unknown functions @, in power series of &

e} o0 - -]

— — 2

R= | Rye™  §=13 5" o =) ame" (2.10)
n=0 n=0 nx=0
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Expressions for the first-term coefficients in the indicated series are given by
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0 o
The approximations for (2.8) and (2.9) are given by
(A —v) P[. 2ro  2rs ( Sa /m) 5e ,}
5a=—4aa—[l"Te+Ee“ B T 5w ) ¢t e T+ O () (2.12)
. (1—wv)P 2ry 2r; Gy il'_g‘) Gy :‘ 2.13)
éb:T[i — St 10 — (g 75w #1° F g 100 016D
Formula (2.13) may be obtained from (2.12) by interchanging a and b, as one might ex-

pect.
Application of a limiting process to (2.12) for & + o0 (£ + 0) yields the known relation

t—v)P
8= 4Ga
which holds for the case of a single punch acting on a half-space. The next three terms in
(2.12) which are independent of y = b/a characterize the effect of the 3 = — k plane, which
is unstressed, but is subjected to the axial load P. Finally, the last term in (2.12) take in-
to account the application of the second punch with finite radius b to the z = — A plane.
Evaluating the integrals in (2.11) we obtain

ro = 2.335, ry = 12.65, r, = 262.2, o, = 296.8
whereupon (2.12) yields
8, = d-v?r ZGZ) 2 11 —1.49  2.68¢ — 12.67e8 - 5.25yie5 -+ O (&7)] (2.14)
In particular, for &€ = 1/4, we have
_AGaby _ 0.657 + 0,00510 (2.15)
a—we =Y ' T2

The last expression shows that under these conditions the influence of the size of the
second punch becomes appreciable only for substantial values of y = b/a (of order 3 — 4).

In conclusion, we note that for y = 1 the problem under consideration may, from symmetry
considerations, be treated like a punch of radius a acting on an elastic layer of thickness
%h resting without friction on a rigid substrate. The solution to this problem was obtained
in [3] by means of dual integral equations, and, for the case of y= 1, Formula (2,15) yields
4Gad, T)O.)G62 (1 —v)P, which coincides with the corresponding result in [3] (cf. Table 3
for p = 0.5).
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Initial stresses in the middle plane enter into the differential equation for plate stability
and the corresponding Bryan energy criterion.

In the general case these stresses are determined from the solution of the plane problem.
For a plate subjected to complex contour loadings, concentrated forces, for example, the
solation of this problem is very complicated.

At the same time, the buckling energy criterion allows a representation in which only
the work of the given external forces enters, in addition to the potential energy of plate ben~
ding, Hence, the natural question arises as to whether it is generally necessary to know the
distribution of the true initial stresses in solving stability problems. It is shown herein
that critical values of the external loadings may be found without determining the initial
state of stress of the plate.

A new form of the buckling energy criterion is obtained in which the initial stresses do
not enter. It is shown that in determining the additional tangential displacements in which
the external loadings do work in plate buckling, it is impossible, in the general case, to
utilize conditions of inextensibility of the midgle plane.

The proposed method of determining the critical loadings without a preliminary solution
of the plane problem is illustrated by examples. The known Somm erfeld problem of stability
of a rectangular plate compressed by concentrated forces is considered.

1. Let u, v, w be the components of the total displacement vector of points of the mid-
dle plane of the plate in arectangular x, ¥,  coordinate system. The x and ¥ axes lie in
the plane of the plate. The strains in the middle plane of the plate are

du 1 fow\? v 1 (dw\2 du dv w dw
°x='a‘;+7(_a;)' 8u=5;+“§'(w)' =%t ta oy M
We consider the stresses in the middle plane to satisfy the equilibrium Egs.
ds ot ds T

— g O —

oz + ay =0, dy + 3z =0 1.2)
and therefore

- i) 1.3
=@’ =@’ = oy (1.3

The stresses on the plate contour are connected with the loadings X and Y by means of
the dependences
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